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10. For what values of ‘a’ the game with the following pay-off matrix is strictly B
determinable ? ' B, B, B

 [JNTU (Mech. & Prod.) 2004] ala 6 2

A A -1 a -7
A3 -2 4 a

19.8. RECTANGULAR GAMES WITHOUT SADDLE POINT

As discussed earlier, if the payoff matrix {v;;} hasa saddle point (7, 5), then i = r, j = s are the optimal strategies
of the game and the payoff v, (=v) is the value of the game. On the other hand, if the given matrix has no
saddle point, the game has no optimal strategies. The concept of optima! strategies can be extended to all
matrix games by introducing a probability with choice and mathematical expectation with payoft.

Let player A choose a particular activity i such that 1 < i < m with probability x; . This can also be interpreted as
the relative frequency with which A chooses activity i from number of activities of the game. Then set
x = {x;, 1 <i<m) of probabilities constitute the strategy of A. Similarly,y = {y;, 1 <j < n} defines the strategy of
the player B.

Thus, the vector X =(x; , X2, ... , X, of non-negative numbers satisfying x; + x, + ... + x,, = 1 is called the
mixed strategy of the player A. Similarly, the vector y=(y;, 2, ..., ys) of non-negative numbers satisfying
yi + ¥y + ... +y, = L is called the mixed strategy of the player B.

Consider the symbol S,, which denotes the set of ordered m-tuples of non-negative numbers whose sum is unity
and x € S,, . Similarly, y € S, . Unless otherwise stated, assume thatx € S, and y € S, , where x and y are mixed
strategies of player A and B, respectively. .

The mathematical expectation of the payoff function E(x, y) in a game whose payoff matrix is {v;;} is defined
by

m n
Ex,y)= iZ:lj El (x; vij) ¥j =x'vy (inmatrix form)

where x and y are the mixed strategies of players A and B, respectively,
Thus the player A should choose x so as to maximize his minimum expectation and the player B should choose
y so as to minimize the player A’s greatest expectation. In other words, the player
A tries for max min E(x,y)  and B tries for min max E (x, y).
X y y X
At this stage it is possible to define the strategic saddle point of the game with mixed strategies.
Strategic Saddle Point. Definition. If miyn max E(x,y)=E (X, Yo) = max rr;in E (x,y), then(Xg , Yo) is

called the strategic saddle point of the game where Xo and yo define the optimal strategies, and v = E(Xo , Yo) is
the value of the game.

According to the minimax theorem (Section 19-11), a strategic saddle point will always exist.

Example 7. In a game of matching coins with two players, suppose one player wins Rs. 2 when there are
two heads and wins nothing when there are two tails; and losses Re. 1 when there are one head and one tail.
Determine the payoff matrix, the best strategies for each player and the value of the game.

Solution. The payoff matrix (for the player A) is given Player B
by H T RowMin.
’ o - Hf2 -1]-d
Here, maximin value (v)=-1# minimax value Player A > Maximin (lower) value (v )
m=2. ‘ Tl=1 01
So the matrix is whithout saddle point. Column Max : % 0

Now, let us outline here how one finds the best strategies
for such games and the expected amounts to be gained or lost
by the players.

Let the player A plays H with probability x and T with probability 1 —x so that x+ (1 —x) = 1. Then, if the
playcr B plays H all the time, A’s expected gain will be

EA H)y=x2+(1-x)(-1)=3x-1. ..(19-6)

Minimax (upper) value (V)
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Similarly, if the player B plays T all the time, A’s expected gain will be

EAT)=x(-1)+(1-x)0=-x. -.(197)
It can be shown mathematically that if the player A chooses x such that

E(A,H)=E(A,T)=E(A),say, , ...(19-8)
then this will determine the best strategy for him. .
Thus, 3x~-l=-xorx=1/4 .(19:9)

Therefore, best strategy for the player A is to play H and T with probability 1/4 and 3/4 , respectively. Since
this is a mixed strategy, it is usually denoted by the set {1/4 , 3/ 4}. So expected gain for the player A is given by

E(A)=i—.2+%(—l)=—%

Now, whatever be the set {y, 1 —~ y} of probabilities with which the player B plays either H or 7, A’s expected
gain will always remain equal to — 1/4. To verify this,

EA,y, 1 —y)=y[%.2+%(—1)]+(1 —y)[%(— 1)+%0]

=yEP+U-)hH=-1 (19-10)

The same procedure can be applied for the player B . Let the probability of the choice of H be denoted by y and
-that of T by (1 = ). For best strategy of the player B,

. E(B,H)=EB,T)=E(B),say .(19:11)
or y.2+(1=-y)(D=yD+(1=-y0
or ' 4y=1
or y=1/4 and therefore 1-y=3/4.

Therfore, E(B) =4i2+%(_ 1)=_£'

Here, E(A) = E(B) = — 1/4. Thus, the complete solution of the gameis:
(i) The player A should play H and T with probabilities 1/4 and 3/4 , respectively. Thus, A’s optimal
strategy is xg = (1/4 , 3/4). ’
(ii) The player B should play H and T with probabilities 1/4 and 3/4, respectively. Thus, B’s optimal
strategy is yo = (1/4, 3/4).
(iti) The expected value of the game is — 1/4 to the player A. Here (xo » Yo) is the strategic saddle point of

this game.
Remark. Although this example can be easily solved by using the formula of Section 19-13, the present discussion will be of great
help in understanding the further discussion.

EXAMINAITON PROBLEMS
1. Find the optimal strategies for the games for which the pay off matrices are given below. Also, find the value of the game.
(@) P ' (b) P2
Ln 1 1
I+ 3 I|-4 6
P n[4 2} P u[ 2 -3]
[Ans.(1/2,1/2),(1/4,3/4); v=5/2) [Ans.(1/3,2/3),(3/5, 2/5); v=0]}
2. Forthe game with the following payoff matrix for the row player, determine the optimal strategies for both the players and
the value of trée garge : .
@ [§73 ® 3]
[Ans.(1/4,3/4),(1/4,3/4); v=-3/4) [Ans. (2/5,3/5),(1/2,1/2) v=4]

3. Agame has the payoff matrix A = [? ﬂ -Show that E(x, y) =1 - 2x (y - %) and deduce that in the solution of the game

the first player follows a pure strategy while the second has infinite number of mixed strategies. [Raj. (M.Phil.) 92}
4. State the fundamental theorem of rectangular games. Show that max min a; < n}lin max aj in the arbitrary matrix :
i

an @12.000eee.81p
a1 a23......0...82p

am 8m2.eeeenrenn@mn
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19.9. MINIMAX-MAXIMIN PRINCIPLE FOR MIXED STRATEGY GAMES l

It has been observed earlier that if a game does not have a saddle point, two players cannot use the
maximin-minimax (pure) strategies as their optimal strategies. This failure of the minimax-maximum (pure)
strategies, in general, give an optimal solution to the game and led to the idea of using mixed strategies. Each
player, instead of selecting pure strategies only, may play all his strategies according to a predetermined set of
probabilities.

Letx;,x3,...,x, and y;,¥;,¥3, ... ¥, be the probabilities of two players A and B, respectively to select
their pure strategies.

Then, X1+x+x3+ . +x,=1 , .(19:12)
and Vi+Y2ty3t .ty =1, .(19:13)

where x; 2 0 and y; 2 0 for all i and j. Thus if v;; represents the (i, j)th entry of the game matrix, probabilities
x; and y; will appear (Table 19-7).

Table 197
Player B
Probabilties— \_j » ¥2 Yj Yn
\ i ! 2 j n
X 1 Vi1 V2 Vij R Vin
X3 2 Va1 . v v vy - Van
Player A : : : : : :
Xi i Vit Viz Vij Vin
Xm m Vmi Vm2 V,_,,j . Vn

The solution of mixed strategy problem is also based on the minimax criterion given in Section 19-4. The only
difference is that the player A selects probabilities x; which maximize his minimum ‘expected’ gain in a column,

while.the player B selects the probabilities which minimize his maximum ‘expected’ loss in arow.
Mathematically, the minimax criterion for a mixed strategy is as follows :

The player A selects x; (x; 2 0, Elx,- = 1) which gives the lower value of the game
I=

max .
X1 2 Xy s ey Xy LIIN {(Vy1X) + V2120 + oo+ Vg X), (VigX) + V220 + ool Vi X)),

v VXL F Va2 o V)] (19-144)
or more precisely,

. m m m
v=max |min{ X vy x, Z VpXi,..., X VipXi
- X; i=1 i=1 i=1

} ...(19-14b)

' n
Similarly, the player B chooses y; (y; 2 0, Z’ y;j = 1) which gives the upper value of the game
I =

_ n n n )
v=n}m {max [jglv'-"y"jgl V2j Yjs eee ,}E] Vi Vj ” ...(19:15)

These values are referred to the maximin (v) and the minimax (v) expected values, respectively.

In pure strategies, the relationship, v 2 v, holds in general. When x; and y; correspond to the optimal
solution, this relation holds in ‘equality’ sense and the ‘expected’ values thus obtained become equal to the
(optimal) expected values of the game. This result follows from the minimax theorem (called the fundamental
theorem of rectangular games) which is derived in Sec. 19-12.

We shall require the following Lemima in Sec 19-10.

Lemma. Let A = (vy) be the payoff matrix of an m X n game. If B = (V';)) is obtained from A by adding a
constant ¢ to every element of A, then an optimal strategy for B is also an optimal strategy for A.
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Proof. Let v" be the value of the game with payoff matrix B. Then for the strategies X, y,

m n , m n
,-51 jEIVijxiyj =i§1 jgl VX yi+c.
If x* , y* are optimal strategies for the game B, then
2’; )j: Vigxiyx £ v < ? ;j‘.‘. Vipxixy, = );: 3: viXiypk+e <V < ‘? ? Vi X*yi+c

}E. ? Vi Xiypx S Vi—c < Zl'. ? Vi X% Yj .

Thus x* , y* are optimal for game A with the value of gamev=y —c,

Hence arbitrarily chosen constant ¢ can be added to each element of A and then we can solve the resulting
game B. The value v of the original game is then obtained simply by subtracting the constant c from the value of
the game B. Constant ¢ is chosen so large that vjj + c is positive (> 0) for all / and j, so that the value of the
game is certainly positive.

Q. 1. Define the terms “maximin element, minimax element and saddle point” of the payoff matrix of a two-person zero-sum
games.

2. Explain 'minimax criterion’ as applied to the theory of games. . [Bhubneshwar (IT) 2004]
3. Let(vj be the payoff matrix for a two-person zero-sum game. If vdenotes the maximin value and vVthe minimax value of
the game, then prove that v > v. That is,mlin [m,ax fvill 2 m’ax [mlin {vi}l.

[Meerut (Stat.) 90]

EXAMINATION PROBLEﬁS

Find the minimax and maximin value of the following games : '
. " 1 9 6 0 ) -1 9 6 8
1 3 6 @3 7 -1 3 @ 2 3 8 4 ™ |-2 10 4 s

2 1 3 4 8 0 -6

6 2 1 6 -9 -2 4 -5 -2 10 -3 5 3 0 7
- 7 4 -2 -5 7 -2 8 4

[Madurai B.Sc. (Comp. Sc.) 92}
[Ans. (i} minimax = 3, maximin = 1, (i) minimax =0, maximin=—-1, (ii)2 < v < 4,(iv) 4 < v < 7]

l 19.10. EQUIVALENCE OF RECTANGULAR GAME AND LINEAR PROGRAMMING I

It has been shown that the player A chooses his optimum mixed stratgies in order to maximize his minimum
‘expected’ gain, i.e.

m m m .
max|miny X vy X, X VpXi, ..., T VipX; ...(19-16)
X; i=1 i=1 i=1
subject to the constraints :
xtxp+x3+..+x,=1 . (19:17)
x20,i=1,2,....m. ...(19-18)
Now, in order to express this problem in linear programming form, let
m m m
min _Zlv“ X; ,‘Z]v,-zx,- 9 oee ,‘X]V;”Xi =vy (1919)
1= 1= I=
which immediately implies that
m m m
.Zlv,-, X 2v, 'Z]v,-z X 2v,.., .Z]vi,,xEZV. ...(19-20)
1= . 1= 1=

Thus, the problem now becomes :Maximize xo = v subject to the constraints :



UNIT 4 : THEORY OF GAMES / 15

vip Xt v xpt v xzt. v, X,
Vi2 X +V22X2+V32X3+... +x,,,2x,,,

vV v

\ .{19-21a)

v

Vipg X1V X+ V3, X3+ ... +V,, X,

Xp+xy+x3+...+Xxp, 1

and X5 X2 X35 ey Xy 2 0]

Here v represents the value of the game. This linear programming formulation can be simplified by dividing all

(n+ 1) constraints by v ; the division is valid as long as v > 0* . In case, v < 0, the direction of the inequality

constraints must be reversed, and if v =0, division would be meaningless. The later point creates no special

difficulty since a constant ¢ can be added to all entries of the matrix ensuring that the value (v) of the game for the

‘revised’ matrix becomes greater than zero. After the optimal solution is obtained, the true value of the game is

obtained by subtracting the same amount c.

In general, if the maximum value of the game is non-negative, the value of the game is greater than zero

(provided the game does not have a saddle point). Thus, assumingv > 0, the constraints become :

\%

v

X X2 Xm
Vipg Vv —+ .y, — 2 1
n, vt mt
X X2 Xm
Vir—+Vp—+ ... +v,,— 2 1
12, tve ) m2 ")
: : i ...(19:21b)
X X3 Xm
Vin +v2,,—v—+,. +vm,,7 21
vV v vV
X X3 X 1
Now, suppose —=X; , —~=X;, ... ,— =X, , and — = xo , then
v v V. v
{1 L 5 X2 X
maxv=mm(— =min{ —+—+... +— ...(19:22)
v v v v

=min {X, + X; + X3 + ... + X, J(which is justified by the last constraint),

Now, finally, the equivalent LP problem becomes :
Minimize xo=X,+ X, + ... +X,,, subject to the constraints : ...(19:23)

V”X1+V21X2+...+Vm1Xm 21
v_uX|+v22X2+...+v,,,2X,,, 2 1

: : : : ...(19-21¢)
Vin XI + vy, Xz + ...tV Xm 21

X,20,X,20,...,X, 2

After an optimal solution is obtained by the simplex method, original optimal values can be obtained from the

given transformation formulae. ,
On the other hand, player B chooses his mixed strategies in order to minimize his maximum “expected’ loss, i.e.
n

n n
min [ max{ Z v;;yi, Z Vi ¥iseees T Vi Vi ..(19:24)
5 iZ 1j Y =1 2 Yj jy ™
subject to the constraints :
yityt .oty =1 .(19:25)
y120,y,20,...,y,20. ...(19:26)

* For convenience, in order to convert a matrix game into a linear programming problem, first make all entries of the matrix
positive by adding a positive constant ¢ to all elements of the matrix game. Of course, ¢ will be subtracted later on from the
value of the game v.
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Proceeding in the like manner, linear programming form of the B’s problem becomes :
Maximizeyg =Y, + Y, + ... + ¥, , subject to the constraints : ..(19:27)

Vi1 Y,+V]2 Y2+...+V1” Yn <1
Va1 Y1+V22 Y2+...+V2,,Yn <1

: : : : ...(19:28)
Vi Y1+Vm2 Y2+...+anY,, <1

Y,20,Y,20,...,Y,20
where y0=%, Y1=%‘,Y2=);—2,...,Y,=%,

Further, it has been observed that the player B’s problem is exactly the dual of the player A’s problem. The
optimal solution of one problem will automatically give the optimal solution to the other and that
min Xp = max yo. The player B’s problem can be solved by regular simplex method while player A’s problem
can be solved by the dual simplex method.

The choice of either method will depend on which problem has a smaller number of constraints. This in
turn depends on the number of pure strategies for either player.

Q.

1. Show how a ‘game’ can be formulated as a linear programming problem.  [IAS (Maths.) 99; Raj. Univ. (M. Phit) 90]
2. With the help of an appropriate example establish the relationship between ‘Game theory’ and ‘Linear Programming’.
3. Establish the relation between a linear programming problem and a two-person zero—sum game.

) [Meerut (OR) 2003]
4. Discuss equivalence of matrix game and the problem of linear programming.

[Kanpur M.Sc. (Math.) 97; Delhi (OR.) 95; Banasthali (M.Sc.) 93]
5. Explain the method of solving a zero-sum two person game as a linear programming problem. [Meerut 2005; Delhi 90]
6. Establish the equivalence of matrix game and the problem of linear programming. [Delhi B.Sc. (Math) 93]

19.11. MINIMAX THEOREM (FUNDAMENTAL THEOREM OF GAME THEORY) I

Theorem 19-2. (Fundamental Theorem of Rectangular Games). If mixed strategies are allowed, there
always exists avalue of the game, i.e. v=y=v.
Alternative Statement. If Zx;=Xy;= 1, x; 20, ;2 0, then

max min T X v;(x;y)= minmaxZ X v (5 y)) 5
X ylx i j ¥ oxiy i

where the symbol 'y | x means 'y given x". The left side relates that for some fixed (given) x, minimize the sum
with respect to'y. This results in a value showing it is a function of X, select x so that this value is maximum.
Proof. The player A’s problem (from sec. 19-10) is :
Min.xg=X; + X, + X3 + ... + X,, , subject to

v“X,+v2]X2+...+v,,,,Xm > 1
v,2X, +V22X2+...+Vm2Xm 21

VieKi +vaXo + ...+ Vonkm 2 1
X20X,20,..,X,20.
The dual problem corresponding to above linear programming problem (called the primal problem) is :

Max.yo=Y,+Y,+ Y3+... +Y,, subjectto
V“Y| +V12Y2+ +V1nY <1

n =

VZIYI +V22Y2+...+V2”Yn <1

leyl+vm2Y2+--~+vmnYn <1
Y,20,Y%,20, ...,Y,20.
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It has been seen that this dual problem is similar to the problem obtained for the player B in Sec. 19-10.
But, the duality theorem states that :

If either the primal or the dual problem has a finite optimum solution, then the other problem has a finite
optimum solution, and optimum numerical values of the objective function are equal, i.e.

maxyp=minXy or v=v=v(valueof the game)
This completes the proof of the theorem.

Q. 1. State, explain and prove the ‘minimax theorem’ (fundamental theorem) for two-person zero-sum finite games.
[Kanpur M.Sc (Math.) 96; Delhi (OR) 93]

2. Let v be the value of a rectangular game with payoff matrix B=(p;. Show that min p; < v < max (pp and
mz,ax m]in pjsvs mlin m?x Pji-

3. Let E (p, q) be expectation function in an mx n matrix rectangular game between player A and B, such that
peR’, qe A". It E(p, q) be such that both mgx ngn E (p, q) and ngn mgx E (p, q) exist, then show that
nain m;lx E,q 2 mgx n'gn Ep q (p and q are probability vectors)
[Raj. Univ. (M. Phil.) 91]

19-12 SOLUTION OF mx n GAMES BY LINEAR PROGRAMMING ]

Following example of (3 x 3) game will make the computational procedure clear.
Example 8. Solve (3 X 3) game by the simplex method of linear programming whose payoff matrix is given

below.
Player B

1 2 3

1 3 -1 @
Playerd 2| (23 3 1
3 -3 3

[UNTU (B. Tech.) 2004; Meerut (MCA) 2000}
Solution. First apply minimax (maximin) criterion to find the minimax (V) and maximin (v) value of the game.

Thus, the following matrix is obtained (Table 19-8).
) Table 198

1 2 3 Row Minimum.

1 ! @ - > Maximin Value (v)
A 2 @ -1 -3 -
3 (9 -3 3] | -4

Column Maximum 3 3 3

Minimax Value (V)

Since, maximin value is — 3, it is possible that the value of the game Table 199

(v) may be negative or zero because B
-3<v<i i P 2

Thus, a constant ¢ is added to all elements of the matrix which is at p
least equal to the — ve of the maximin value, i.e. ¢ 23. Let ¢ =5. The A 2 2 8
matrix is shown in Table 1-9. Now, following the reasoning of Sec. 31 2 8
19-10, the player B’s linear programming problem is :

Maximizeyg=Y;+ Y, +Y; ...(1929)

subject to the constraints :
8Y, +4Y,+2Y;<1,2Y;+8Y,+4Y;<1,1Y;+2Y,+8Y;<1,Y,20,Y,20,Y;20 ..(1930)

%
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Introducing slack variables, the constraint equations become :
8Y, +4Y, +2Y;+Y,

2Y, +8Y, +4Y, +Ys = ...(19:31)
1Y, +2Y, + 8Y; +Y =1
/..,,,Y3,Y,,Y5,Y 20.
Now the following simplex table is formed.
Table 19-10. Simplex Table
- 1 ! 1 0 0 0
B Cp Yg (03] (05 o3 oy as (273 Min. Ratio
T B B2 (Bs) (Yp/oy)
o 0 1 8- Ao e 200 [ /8¢
s 0 1 2 8 4 0 1 0 172
O 0 1 1 2 8 0 0 1 1/1
Yo=Cg¥Yp=0 - n* -1 -1 0 0 0 « Aj=Cpa;—-¢;
T 1
o 1 1/8 1 172 1/4 178 0 0 172
Ol 0 3/4 0 7 7/2 - 174 1 0 3/14
273 0 7/8 0 372 e 31/4 e - 1/8— e e - e - 1T /62 -
yo=1/8 0 -1/2 (- 3/4)* 178 0 (J)' « 4
o 1 3/31 1 14/31 0 4/31 0 -1/31 3/14
s 0 11731 0 ————— - - 6/3— —b——m 14/3 -~ $1/196 «
[+ ) 1 7/62 0 6/31 1 - 1/62 0 4/31 7/12
Yo = 13/62 0 (- 11/31)* 0 7/62 0 3/31 « A
0 d
[+3} 1 1/14 1 0 0 177 1/14 0
o 1 11/196 0 1 0 ~3/98 31/196 -1/14
27} 1 5/49 0 0 1 -1/98 -3/98 177
Yo =45/196 0 0 0 5/49  11/196 1714 «all
A;20
Thus, the solution for B’s original problem is obtained as :
« . Yi 114 14 . Y2 11/196 11
Vi =0 T 25/196 45 Y2 Ty, T 45/196  45°
Y.
The optimal strategies for the player A are obtained from the final table of the above problem. This is given by
duality rules :
Xo=Vo='1ig%.X1 =A4=%,X2=A5=T19—16‘.X3=A6=1—14-
Hence, X1*=f—;=§—g'"2*=f_§=%‘¢1—;”‘3*=%=%§'\'*=%-
EXAMINATION PROBLEMS
1. Two companies A and B are competing for the same product. Their different A
strategies are given in the following payoff matrix: A A, As
Use linear programming to determine the best strategies for both the players.
[Madurai BSc (Math.) 93; Raj. (M. Phil.) 81 Bip2 -2 3
[Hint. First, make the payoff's positive by adding a constant quantity ¢ = 4 (say). B
The modiefied payoff matrix becomes A B; | -3 5 -1

6 2 7
3[193]
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Then, formulate the problem for player Bby usual transformation as :
Maximize yp = Y; + Ya., subjectto:6Y; + Yo<1,2Y; +9Y2<1,7Y; +3Y2<1, and Y720, Y220

Now apply simplex method to find the following solution for B:

vl a8 41 Y7 18 7 Y 5 13 5
= =3 TR N T TR 3 T2 2T T2 3 T
For player A, read the solution to the dual of above problem
A a1 a8 0 X _2 18 2 X 1 13 1
Ve 4T AT AT T T35 3 T3 % 1353 3 =0l

[Ans. (2/3,1/3,0);(7/12,5/12) ; v=1/3]

For the following payoff table, transform the zero-sum game into an equivalent linear programming problem and soive it
by simplex method :

[Hint. Payoff's are already non-negative. Formulation of L.P. problem Player @
for Qin usual notations is : ] 2 0
Max.yo= Y;+ Y2+ Ya, subjectio: . P, 9
9Y;+1Yo+4Y3<1,0Y;+6Y,+3Y3<1, ’ Player P P, 0 6
5Y:+2Y,+8Y3<1,and Y;,Yz,Ys 2 0.
its dual is the formulation for player P. Proceeding exactly as in solved Ps 5 2
example apply simplex method.
{ Ans. (3/8,13/24 ,1/12) ;(7/24,5/9, 11/72) ; v=91/24]
Solve the following games by linear programming :
0 (i) (iii) (iv)
B B
B | i [t
-1 2 1 (-1 1 1 1 -1 3 112 4
Al 1 -2 2 A2 2 -2 2 Af3 5 - A2l2 3
3 4 - 3| 8 3 -8 6 2 -2 3/]3 2
[Ans. (i) A(17/46, 20/46 , 9/46); (i)6/11,3/11,2/11); . (iii) (2/3,1/3,0),(0,1/2,1/2),v =1]

B(7/23,6/23,10/23), v=15/23]) (5/22,8/22,9/22);v=6/11]
Solve the following 3 x 3 games by linear programming :

(i) Player B (ii) Player B
1t -1 -1 3 -2 4
Player A[-1 -1 3 Player A {-1 4 2
-1 2 -1 2 2 6
[Agra 98, 93, 92] [Meerut 93]

[Ans. A(6/13,3/13,4/13), B(6/13,4/13,3/13), v* =~ 1/13] [Ans. (0,0, 1),(4/5,1/5,0),v=2]
A and B play a game in which each has three coins : a penny, a nickel and a dime. Each selects a coin without the
knowledge of the other's choice. If the sum of the coins is an odd amount, Awins B’s coins; If the sum is even, Bwins A's
coin. Find the best strategies for each player and the value of game.
Penny Nickel Dime Penny Nickel Dime _
[A"" A( 172 12 0 j Blizzz 13 o )""0]

Aand Bplay a game as follows : .
They simultaneously and independently write one of the three numbers 1, 2 and 3. If the sum of the numbers written is
even, Bpays to Athis sum in Rupees. If itis odd, A pays the sum to Bin Rupees. Form the payoff matrix of piayer Aand
solve the game to find out the value of the game and probabilities of mixed strategies of Aand B.

2 -3 4
[Ans. | -3 4 -5|,A(1/74,1/2,1/4),B(1/4,1/2,1/4), v=0]
4 -5 6
Convert the following problems into linear programming problem :
0] )
B B 8 20 -3 1
53 -2 6 25 4 2
A{2 4 o] A 9
4 5 1 0 -8 12
16 9 21 0-J

For the following payoff matrix, find the value of the game and the strategies of players A and B by using linear
programming :
B

3 -1 4
A[s 7 -2}
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9. Transform the following matrix games into their corresponding primal and dual linear programming problems. Hence

10.

1.

12.

13.

14.

15.

solve them. :
3 -2 4 0 -1 1
@ [_ i 2) [Delhi BSc (Maths) 91] o) 11 -1 [Dethi B.Sc. (Math.) 91]
1 -1 0
[Ans. (1/2,1/2), (3/5,2/5, 0), v=1] [Ans. (1/é ,1/2,0),(0,1/2,1/2), v=0}
Use simplex method to solve the following games :
5§ 3 7 3 -2 4]
(@ |7 9 1 (b) -1 4 2
10 6 2 . 2 2 6]
[Ans. (2/3,1/2,0),(0,1/2,1/2),v =5] [Ans. (0,0, 1), (4/5,1/5,0),v=2]
Transform the following matrix game into its corresponding primal and dual linear programming problems :
2 1 0 -2 .
1 0 3 2 [Delhi M.Sc. (OR) 92]

Solve one of these linear programming problems to obtain the value and the optimal strategies for the two players.
[Ans. Primal. Min. xq = X; + X, subject to

5X1+4X:21,4X;+3X221,3X, +6X221, X;+5X221, and Xy 20,X20
Dual: Max.yp=Y;+ Y2+ Ya,subjectto 5Y; +4Y,+3Y3+ Y4<1,4Y;+3Y2+6Y3+ 5Y,<1,
Y;i20,i=1,2,3,4,andc=3.
In a two person game each player simultaneously shows either one or two fingers. If the number of fingers match, player
A wins arupee from player B, otherwise A pays a rupee to B. Show that the payoff matrix for this game is :
~ : - 1 Solve this game by reducing itto an L.P.P.
[Ans. (1/2,1/2),(1/2,1/2),v=0

Two players independently select one of ‘mouse’, ‘cat’, ‘tiger’. and ‘elephant’ and simultaneously reveal their choices. It
is known that the cat chases the mouse (for score 1), the tiger chases the cat (for score 2), the elephant chases the tiger (for
score 3) and the mouse chases the elephant (for a score 4). All other combinations yield a zero score. Formulate the
payoff matrix and determinie the optimal strategies of the two players.

[Hint. The payoff matrix is skew-symmetric :

Mouse Cat Tiger Elephant
4

Mouse 0 -1 0
Cat 1 0 -2 0
Tiger 0 2 0 -3
Elephant| -4 0 3 0
Solve by using L.P. process, whose pay-off matrix is
3 2 4 0
3 4 2 4
A 4 2 4 0
0 4 0 8

[Meerut (M.A.) 97)

For the following pay-off matrix, find the value of the game and the strategies of players Aand B by using linear
programming : -

Player B
1 2 3
Player A 1 3 -1 4
2 6 7 -2

[Delhi (M.B.A.) 96}
[Ans. The solution to the problem, therefore, is : S = (9/14, 5/14), Sg= (0, 3/7, 4/7), value of game = 13/7.

[ 1913. TWO-BY-TWO (2 x 2) GAMES WITHOUT SADDLE POINT ]

There are several methods for determining the optimal strategies and the value of the game. But, in most of the
situations, the matrix game can be reduced to a 2 x 2 game (to be discussed later in Secs. 19-14 & 19-1 5). Itis
therefore worth- while to determine the solution of 2 X 2 game in the following theorem.

Theorem 19-3. Show that for any zero-sum two-person game where optimal strategies are not pure strategies
(i.e. ** »re is no saddle point) and for which the playerAB’s payoff matrix is

Yi. »
Xy Vi Vi2

A

X2 V21 V22
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and optimal strategies (x) , x;) and (y1 , y2) are determined by
Xy V=V Y1_Va—Vi
X2 Vu-=Vi2' Y2 Vn—Va
and the value (V) of the game to the player A is given by
__ VuVaa— ViV
Vi + V= (Vig+ V) [Meerut 2002; Rohilkhand 92]
Proof. Let a mixed strategy for player A be given by (x; , x;) where x; + x, = 1. Thus if player B moves his first
strategy, the net expected gain of A will be E; (x) = vy1x; + 1025
and if B moves his second strategy, the net expected gain of A will be E; (x) = vix) + vaox2 .
But, player A wants to maximize his minimum expected gain. So the value of the game (v) must be minimum
of Ei(x) and Ey(x), i.e. E\(x) 2V, Ex(x) 2 V.
Thus for the player A, we have to find x) 20, x, 20, and v to satisfy the following three relationships (as
obtained in Sec.19-10) :

VX V5 2V, .(19:33)
ViaX] + Va2Xs 2v, ..(1934)
x1+x=1. ..(19-:35)

For optimum strategies, inequalities (19-33) and (19-34) become strict equations, i.e.
' VX VX =, ..(1936)
ViaXp +Vaaxa =V (1937)

Subtracting equation (19-37) from the equation (19-36), we get

(V“ - Vlz) X + (V21 - V22) Xy = 0. .(1938)
which gives h_Ya—ia (19:39)

X vii—viz
Hence, we evaluate x; and x; separately by using the equation (19-35),

V22 — V21
x| = ...(19-40)
v+ v — (viz +va1) -
-V
X=l-x = et imiat .(19-41)

(i1 +v) = (via+va)
The value of the game can be obtained by substituting the values of x; and x, in either of the equations
(19-36) and (19-37) to obtain

v (v —va) va1 (Vi1 — V12) _ Yuva—vavia (19-42)
Ty +ve = tva) viitva - (Vi tva) Vig+ v = (Vi tva) -
In the same manner for the player B, find y; 2 0, y, 2 0, and v to satisfy the following three relations :
VY T Vi <v, (1943)
VoY VY2 SV, ..(19-44)
yi+y=1L ...(19-45)

Here it should be remembered that the player B wants to minimize his maximum loss.
Again for optimum strategies of player B, consider the inequalities (19-43) and (19-44) as strict equations and
obtain '
N _ramhiz ..(19:46)
Y2 Vi —Va
Using the equation (19-45)

V22— V12
= ...(19-47)
7 v+ v — (Vo +vi2)
n=1-y= = o ..(19-48)

vit+ v — (v +vig)



